Data mining techniques for cancer detection using serum proteomic profiling
نویسندگان
چکیده
OBJECTIVE Pathological changes in an organ or tissue may be reflected in proteomic patterns in serum. It is possible that unique serum proteomic patterns could be used to discriminate cancer samples from non-cancer ones. Due to the complexity of proteomic profiling, a higher order analysis such as data mining is needed to uncover the differences in complex proteomic patterns. The objectives of this paper are (1) to briefly review the application of data mining techniques in proteomics for cancer detection/diagnosis; (2) to explore a novel analytic method with different feature selection methods; (3) to compare the results obtained on different datasets and that reported by Petricoin et al. in terms of detection performance and selected proteomic patterns. METHODS AND MATERIAL Three serum SELDI MS data sets were used in this research to identify serum proteomic patterns that distinguish the serum of ovarian cancer cases from non-cancer controls. A support vector machine-based method is applied in this study, in which statistical testing and genetic algorithm-based methods are used for feature selection respectively. Leave-one-out cross validation with receiver operating characteristic (ROC) curve is used for evaluation and comparison of cancer detection performance. RESULTS AND CONCLUSIONS The results showed that (1) data mining techniques can be successfully applied to ovarian cancer detection with a reasonably high performance; (2) the classification using features selected by the genetic algorithm consistently outperformed those selected by statistical testing in terms of accuracy and robustness; (3) the discriminatory features (proteomic patterns) can be very different from one selection method to another. In other words, the pattern selection and its classification efficiency are highly classifier dependent. Therefore, when using data mining techniques, the discrimination of cancer from normal does not depend solely upon the identity and origination of cancer-related proteins.
منابع مشابه
Detection of Breast Cancer Progress Using Adaptive Nero Fuzzy Inference System and Data Mining Techniques
Prediction, diagnosis, recovery and recurrence of the breast cancer among the patients are always one of the most important challenges for explorers and scientists. Nowadays by using of the bioinformatics sciences, these challenges can be eliminated by using of the previous information of patients records. In this paper has been used adaptive nero fuzzy inference system and data mining techniqu...
متن کاملFeed Forward Artificial Neural Network: Tool for Early Detection of Ovarian Cancer
Pathological changes in an organ or tissue may be reflected in proteomic patterns in serum. The early detection of cancer is crucial for successful treatment. Some cancers affect the concentration of certain molecules in the blood, which allows early diagnosis by analyzing the blood mass spectrum. It is possible that exclusive serum proteomic patterns could be used to differentiate cancer sampl...
متن کاملProteomic Analysis of Gene Expression in Basal Cell Carcinoma
Background: Basal Cell Carcinoma (BCC) is a type of non-melanoma skin cancer. Alteration in gene expression is the important event that happens in cancer cell. Detection of this event is possible by proteomics techniques. Methods: Normal and tumor tissues were taken from BCC patient. Total proteins were purified by standard methods, and proteins were separated by two-dimensional electrophoresis...
متن کاملA New Hybrid Feature Subset Selection Algorithm for the Analysis of Ovarian Cancer Data Using Laser Mass Spectrum
Introduction: Amajor problem in the treatment of cancer is the lack of an appropriate method for the early diagnosis of the disease. The chemical reaction within an organ may be reflected in the form of proteomic patterns in the serum, sputum, or urine. Laser mass spectrometry is a valuable tool for extracting the proteomic patterns from biological samples. A major challenge in extracting such ...
متن کاملIntrusion Detection System Using Data Mining Technique
This paper analysis and criticizes the way of using, functioning the intrusion detection system in data mining. Understanding the techniques. data mining approach such as intrusion detection system using association datasets where as in event correlation data mining method we will maintain. traffic analysis and anomaly intrusion detection systems are needed. log data by using a knowledge discov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Artificial intelligence in medicine
دوره 32 2 شماره
صفحات -
تاریخ انتشار 2004